
Stefan Wagner

Case Studies

Migrating to Microservices

Research Objective

Our overarching research objective is to analyze the migration process
from monolithic architectures to Microservices on the basis of real-world
systems in industry practice.

Research Questions
RQ1: What are intentions for migrating existing systems to
Microservices?

RQ2: Which Microservices migration strategies and decomposition
approaches do companies apply?

RQ3: What are the major technical and organizational

challenges during a Microservices migration?

Data Collection

16 semi-structured interviews about 14 different
industrial systems

Interviews were recorded and transcribed.

Data Analysis
Qualitative coding

Main categories: Intentions, Strategies, Challenges

Followed constant comparison of Grounded Theory

Companies and Participants
TABLE I

COMPANY AND PARTICIPANT DEMOGRAPHICS

Company ID Company Domain # of Employees Participant ID Participant Role Years of Experience System ID

C1 Financial Services 1 - 25 P1 Developer 6 S1

C2 Software & IT Services >100,000
P2 Lead Architect 30 S2
P3 Architect 24 S3
P4 Architect 30 S4

C3 Software & IT Services 26 - 100 P5 Architect 20 S5
P6 Lead Developer 8

C4 Software & IT Services 101 - 1,000 P7 Architect 9 S6
P8 Architect 17 S7

C5 Software & IT Services >100,000 P9 Lead Developer 7 S8

C6 Tourism & Travel 1,001 - 5,000
P10 Developer 9 S9
P11 Data Engineer 7
P12 Architect 12 S10

C7 Logistics & Public Transport 101 - 1,000 P13 DevOps Engineer 5 S11
C8 Retail 5,001 - 10,000 P14 Lead Architect 9 S12
C9 Software & IT Services 101 - 1,000 P15 Architect 18 S13
C10 Retail 1,001 - 5,000 P16 Architect 22 S14

C1-S1, Derivatives Management System: C1, a small fi-
nancial services company, offers a system for the management
and search of derivatives as Software as a Service (SaaS).
The single-tenant solution evolved to a complex monolith over
time. According to P1, it was hard to make changes in the
code due to the high complexity and internal dependencies.
The decreasing maintainability made it difficult to release new
functionality in a timely manner. Another migration driver was
the planned scaling of organizational units. The small team
decided for a gradual migration without involving external
resources. The team successively extracted functionality from
the PHP monolith, starting with parts that did not necessarily
need to run inside the central instance. This resulted in several
smaller services grouping around the core service. No struc-
tured decomposition approach was followed. Challenges arose
around finding a solution for service discovery, which was
achieved by static configuration in the beginning. Eventually,
the team found a reasonable solution with Eureka (Spring
Cloud). Another challenge was to achieve a certain degree of
fault tolerance by “reacting in a graceful way” (P1) to failing
or missing services. As an intermediate result of the ongoing
migration, P1 stated a significant reduction of time to market
for new features.

C2-S2, Freeway Toll Management System: The first of
three systems developed by the large software consulting
enterprise C2 was a management and payment system for
freeway tolls. The initial decentralized solution was replaced
by a central Microservices-based system with extended func-
tionality. According to P2, the system suffered from degraded
maintainability and didn’t meet the current requirements any-
more, like the increased amount of transmitted sensitive data
and compliance with high security standards arising thereby.
A major technical challenge was to find the right service cut.
Here, P2 advocated for a greenfield-like approach to develop
the new system: “Most productive and successful Microser-

vices projects that I know are greenfield developments.” He
was afraid of the complex monolith and the necessary effort

to replace transactions by eventual consistency. As well, he
was skeptical towards concepts like Domain-Driven Design in
this regard and convinced that there is no way to automate
such a task. Other major challenges were the integration of
services and communication with external parties, as well as
test automation. The need to migrate the three core services
within a short time resulted in slightly oversized development
teams, which had a negative impact on the team’s efficiency.
As a result of the completed migration, the new system
fulfilled all requirements. For assessing its maintainability, it
would still be too early.

C2-S3, Automotive Problem Management System: The
second system from C2 was an automotive management sys-
tem for the categorization and analysis of problems. The very
traditional Java monolith with JSF frontend had many flaws.
Users started building their own workarounds using e.g. Excel.
To increase maintainability, the customer decided to rewrite
and extend the solution. According to P3, further expectations
for the new architecture were scalability and the facilitation
of a multi-vendor strategy. However, the customer’s decision
for Microservices would not have been taken very rationally.

The migration was started by rebuilding a user-facing
component using current technologies and integrating it with
the legacy monolith. This component served as a foundation
for successively building a service-based solution along the
entire business workflow, with each bounded context forming a
service. There was no particular method followed to determine
the service cut or achieve appropriate granularity. P3 also
notes that the decomposition partially fell short in terms of
loose coupling. A change to one service sometimes involved
adapting two or three others. Another challenge was keeping
both systems in sync during the migration phase. Here, the
initially rebuilt landing page was used to route the traffic
between both systems. P3 emphasized the vast amount of new
technologies that had to be mastered in a short time, which
implied learning efforts on the way. The customer originally
followed a Waterfall model, which was gradually replaced by

3

Systems and ProjectsTABLE II
SYSTEM OVERVIEW AND ORGANIZATION

ID Purpose Inception Timeframe of
Migration in years

of
Services

of People
involved

Team Size Process Model

S1 Derivatives mgmt. (banking) Rewrite 1.75 (ongoing) 9 7 7 Scrum
S2 Freeway toll management

system
Rewrite &
Extension

1.5 to 2 10 10 (only
devs)

5-10
(up to 40)

Individual (based on
Scrum)

S3 Automotive problem
management system

Rewrite &
Extension

2 to 3 (ongoing) 10 50 7-9 Scrum (from
Waterfall)

S4 Public transport sales system Rewrite &
Extension

2 (ongoing, exp 4) ⇠100 ⇠300 6-10 Scrum, SAFe (from
Waterfall)

S5 Business analytics data
integration system

Greenfield 1.5 to 2 (ongoing) 6 7 7-9 Individual (based on
Scrum, Kanban)

S6 Automotive configuration
management system

Rewrite 0.5 (ongoing, exp 3) 60 20
(w/o cust.)

4 Scrum (from
Individual)

S7 Retail online shop Replace COTS 2.5 (ongoing) ⇠250 ⇠200 6-8 Scrum, Kanban
S8 IT service monitoring platform Cont. Evolution 2 (ongoing, exp 3) 9 15 6-10 custom
S9 Hotel search engine Cont. Evolution 1 to 1.5 (ongoing) ⇠10 ⇠50 3-6 Scrum
S10 Hotel management suite Rewrite &

Extension
0.5 to 1 (ongoing,
exp 2)

20 50 1-5 Scrum, Kanban

S11 Public transport mgmt. suite Cont. Evolution 2 to 3 (ongoing) 10 ⇠175 5-8 Scrum
S12 Retail online shop Replace COTS 1.5 ⇠45 ⇠85 6-10 Scrum, Kanban
S13 Automotive end-user service

management
Rewrite &
Extension

- (ongoing) 7 30 5-7 Scrum

S14 Retail online shop Replace COTS 2.5 ⇠175 ⇠350 6-10 Scrum, Kanban

agile processes based on Scrum. The ongoing transition turned
out to be a difficult process in this regard. Nonetheless, the
agile principles were perceived positively by the customer. P3
found it interesting to see how people were more motivated
and sometimes showed themselves from a different side.

C2-S4, Public Transport Sales System: The last system
from C2 was a sales system for public transportation. The
legacy system was a complex of four monoliths that grew
over more almost 40 years and provided an enormous set of
functionality. The monoliths were not well integrated, which
often required duplication of development efforts. Microser-
vices seemed to be the fitting architecture to accommodate
the system in manageable chunks. P4 described the chosen
approach as something between green- and brownfield. In
fact, the system was completely rebuilt, but adjacent systems
remained unchanged. The service cutting was guided by the
functional areas of the originating system, resulting in ⇠100
Microservices structured in 15 domains. Hereby, Domain-
Driven Design was used without involving additional tools.

The biggest challenge for this large-sized system was the
alignment of activities for the 300 developers in 30 teams,
e.g. maintaining a common backlog for functionality that
affects multiple teams. Likewise, orchestrating the resulting
Microservices was seen as challenging on the technical side.
To mitigate the issues, C2 created a “very large amount

of guidelines and rules for service creation” (P4). Still, the
resulting service granularity was very different. The process
model had been adapted from classic Waterfall to SAFe
(Scaled Agile Framework) and Kanban in some teams, which
was rolled out one year after the migration started. P4 observed
an efficiency increase after a settling-in period of around one
more year. According to P4, the decreased number of defects
found via manual testing proved the positive impact of test

automation by the implemented CI/CD pipelines.
C3-S5, Business Analytics & Data Integration System:

The small software and consulting company C3 develops a
business analytics system for big data that is focused on
data integration and analysis via data mining or linguistic
algorithms. We interviewed architect P5 and lead developer
P6. The company decided to build the central backend in a
greenfield approach based on Microservices. Intentions were
building a manageable, maintainable and scalable platform
which was seen as a mandatory capability in the big data

context. The composition of six Microservices was designed
by the lead architect.

Both interviewees saw building the necessary expertise as
challenging for a small team. It would hardly be possible
to have dedicated experts for all areas. P6 remarked that it
required developers with the right attitude, who are eager
acquire new knowledge even after work, if necessary. Still,
this situation led to compromises in architectural design for
the sake of simplicity, e.g. a single service accommodating the
entire data. Another challenge was achieving fault tolerance
among services, which evolved into “lengthy philosophical

and controversial discussions” (P6) on how bullet-proof the
solution needed to be. Furthermore, versioning and security
aspects were brought up, whereas the latter ones were crucial
for the product and got resolved in a time-devouring process.
The team of C5 employs agile methods based on Scrum and
Kanban, but got slightly off track due to the pressuring day-
to-day business which sometimes “needs to be managed in a

traditional way” (P5). Efforts to achieve pipeline automation
were currently in progress, but hindered by the lack of
experienced personnel and tasks of higher priority.

C4-S6, Automotive Configuration Management System:
The software services company C4 was in the process of

4

Intentions
TABLE III

INTENTIONS, STRATEGIES, AND CHALLENGES PER SYSTEM

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 # of Mentions

In
te

nt
io

ns

Maintainabilitya x x x x x x x x x x 10
Scalabilityb x x x x x x x 7
Functional Requirements x x x x x 5
Operability x x x x x 5
Company Strategyc x x x x 4
Team Scalability x x x x 4
Time to Market x x x x 4
Interoperabiliy x x 2
Reliability x x 2

St
ra

te
gi

es

Process S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 # of Mentions
Rewrite x x x x x x x x x 9
Strangler Pattern x x x x x x x 7
Extension x x x x x x x 7
Parallel Operation x x x x x 5
Greenfield x x x x 4
COTS Replacement x x x 3
Continuous Evolution x x 2

Decomposition
Other (or non-systematic) x x x x x x x x x 9
Functional Decomposition x x x x x x x 7
Existing System’s Structure x x x x x 5
Domain-Driven Design x x x 3

C
ha

lle
ng

es

Technical S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 # of Mentions
Decomposition x x x x x x x x 8
Lack of Expertise x x x x x x x x 8
DevOps and Automation x x x x x x 6
Integration of Services x x x x 4
Legacy Systemd x x x x 4
Security x x x x 4
Fault Tolerance x x 2
Organizational
Mindset Change x x x x x x x x x 9
Collaboration between Teams x x x x x x x 7
Justification to Mgmt./Cust. x x x x x x 6
Recruiting Personnel x x x x x x 6
Central Governance x x x 3
Volatile Requirements x x x 3

a including Analyzability and Modifiability (7), Size and Complexity of Exising Solution (6), Small Units (5)
b including Traffic Bottlenecks (3)
c including Could Readiness (2)
d Complexity, Peculiarities, Deprecated Technologies

project phases until transitioning into a continuous product
development mode.

One of the most extensive conversations for P12’s team
arose from the question: “What is a service, how big is it

and what should it contain?” Decomposition is the process
of splitting up a system or problem space into smaller parts.
Seven participants used a functional decomposition approach
(S4, S6, S7, S10, S12, S13, S14), as postulated by Microser-
vices design principles [24]. Even though Domain-Driven
Design is often cited in literature to achieve such service
cuts [5], only three of them reported its explicit usage (S4,
S12, S14). For the remaining systems, a different or non-

systematic approach was used. Here it was often described as
the architect’s task or the result of architecture group meetings.
For these systems we can observe a significant overlap with
using the existing system’s structure as a basis (Table III).
Refactoring approaches described in academic literature that
partly offer tool support [26] were not considered by any of
our interviewees. When asked directly, they were not aware
of any such tools (P6, P14) or convinced that there is no way
to automate it (P2, P12). In case of S6, the very extensive
documentation of the legacy system was crucial for steering
the decomposition, while P12 made positive experiences with
learning from the original creators.

8

Strategies

TABLE III
INTENTIONS, STRATEGIES, AND CHALLENGES PER SYSTEM

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 # of Mentions

In
te

nt
io

ns

Maintainabilitya x x x x x x x x x x 10
Scalabilityb x x x x x x x 7
Functional Requirements x x x x x 5
Operability x x x x x 5
Company Strategyc x x x x 4
Team Scalability x x x x 4
Time to Market x x x x 4
Interoperabiliy x x 2
Reliability x x 2

St
ra

te
gi

es

Process S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 # of Mentions
Rewrite x x x x x x x x x 9
Strangler Pattern x x x x x x x 7
Extension x x x x x x x 7
Parallel Operation x x x x x 5
Greenfield x x x x 4
COTS Replacement x x x 3
Continuous Evolution x x 2

Decomposition
Other (or non-systematic) x x x x x x x x x 9
Functional Decomposition x x x x x x x 7
Existing System’s Structure x x x x x 5
Domain-Driven Design x x x 3

C
ha

lle
ng

es

Technical S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 # of Mentions
Decomposition x x x x x x x x 8
Lack of Expertise x x x x x x x x 8
DevOps and Automation x x x x x x 6
Integration of Services x x x x 4
Legacy Systemd x x x x 4
Security x x x x 4
Fault Tolerance x x 2
Organizational
Mindset Change x x x x x x x x x 9
Collaboration between Teams x x x x x x x 7
Justification to Mgmt./Cust. x x x x x x 6
Recruiting Personnel x x x x x x 6
Central Governance x x x 3
Volatile Requirements x x x 3

a including Analyzability and Modifiability (7), Size and Complexity of Exising Solution (6), Small Units (5)
b including Traffic Bottlenecks (3)
c including Could Readiness (2)
d Complexity, Peculiarities, Deprecated Technologies

project phases until transitioning into a continuous product
development mode.

One of the most extensive conversations for P12’s team
arose from the question: “What is a service, how big is it

and what should it contain?” Decomposition is the process
of splitting up a system or problem space into smaller parts.
Seven participants used a functional decomposition approach
(S4, S6, S7, S10, S12, S13, S14), as postulated by Microser-
vices design principles [24]. Even though Domain-Driven
Design is often cited in literature to achieve such service
cuts [5], only three of them reported its explicit usage (S4,
S12, S14). For the remaining systems, a different or non-

systematic approach was used. Here it was often described as
the architect’s task or the result of architecture group meetings.
For these systems we can observe a significant overlap with
using the existing system’s structure as a basis (Table III).
Refactoring approaches described in academic literature that
partly offer tool support [26] were not considered by any of
our interviewees. When asked directly, they were not aware
of any such tools (P6, P14) or convinced that there is no way
to automate it (P2, P12). In case of S6, the very extensive
documentation of the legacy system was crucial for steering
the decomposition, while P12 made positive experiences with
learning from the original creators.

8

Challenges

TABLE III
INTENTIONS, STRATEGIES, AND CHALLENGES PER SYSTEM

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 # of Mentions

In
te

nt
io

ns

Maintainabilitya x x x x x x x x x x 10
Scalabilityb x x x x x x x 7
Functional Requirements x x x x x 5
Operability x x x x x 5
Company Strategyc x x x x 4
Team Scalability x x x x 4
Time to Market x x x x 4
Interoperabiliy x x 2
Reliability x x 2

St
ra

te
gi

es

Process S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 # of Mentions
Rewrite x x x x x x x x x 9
Strangler Pattern x x x x x x x 7
Extension x x x x x x x 7
Parallel Operation x x x x x 5
Greenfield x x x x 4
COTS Replacement x x x 3
Continuous Evolution x x 2

Decomposition
Other (or non-systematic) x x x x x x x x x 9
Functional Decomposition x x x x x x x 7
Existing System’s Structure x x x x x 5
Domain-Driven Design x x x 3

C
ha

lle
ng

es

Technical S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 # of Mentions
Decomposition x x x x x x x x 8
Lack of Expertise x x x x x x x x 8
DevOps and Automation x x x x x x 6
Integration of Services x x x x 4
Legacy Systemd x x x x 4
Security x x x x 4
Fault Tolerance x x 2
Organizational
Mindset Change x x x x x x x x x 9
Collaboration between Teams x x x x x x x 7
Justification to Mgmt./Cust. x x x x x x 6
Recruiting Personnel x x x x x x 6
Central Governance x x x 3
Volatile Requirements x x x 3

a including Analyzability and Modifiability (7), Size and Complexity of Exising Solution (6), Small Units (5)
b including Traffic Bottlenecks (3)
c including Could Readiness (2)
d Complexity, Peculiarities, Deprecated Technologies

project phases until transitioning into a continuous product
development mode.

One of the most extensive conversations for P12’s team
arose from the question: “What is a service, how big is it

and what should it contain?” Decomposition is the process
of splitting up a system or problem space into smaller parts.
Seven participants used a functional decomposition approach
(S4, S6, S7, S10, S12, S13, S14), as postulated by Microser-
vices design principles [24]. Even though Domain-Driven
Design is often cited in literature to achieve such service
cuts [5], only three of them reported its explicit usage (S4,
S12, S14). For the remaining systems, a different or non-

systematic approach was used. Here it was often described as
the architect’s task or the result of architecture group meetings.
For these systems we can observe a significant overlap with
using the existing system’s structure as a basis (Table III).
Refactoring approaches described in academic literature that
partly offer tool support [26] were not considered by any of
our interviewees. When asked directly, they were not aware
of any such tools (P6, P14) or convinced that there is no way
to automate it (P2, P12). In case of S6, the very extensive
documentation of the legacy system was crucial for steering
the decomposition, while P12 made positive experiences with
learning from the original creators.

8

Case Study – Definitions

Empirical inquiry, in which …

• a contemporary phenomenon is investigated within its real-life context

• boundaries between phenomenon and its context are not clearly
evident

Case Study – Definitions

Empirical inquiry, which …

• copes with the technical distinctive situation in which there will be
many more variables of interest than data points,

• relies on multiple sources of evidence (data needs to be converged)
and

• benefits from prior development of theoretical propositions to guide
data collection and analysis (or generates a new theory).

Experiment

Case Study

Survey

Action
Research

Smaller sample

Less control

Realistic environment

Much smaller sample

Wider range of data collection

Potentially direct observation
Less focus on change

Types of Case Studies
Improving

• The studied phenomenon is improved in some way

• Close to action research

• Example: Does the introduction of user stories lead to less effort in requirements
engineering?

• Example: Does this new hazard analysis technique find more hazardous scenarios?

Exploratory

• Criteria or parameters instead of purpose

• Example: Are static analysis tools used and if yes, why?

• Example: What do CMM level 3 organisations have in common?

Types of Case StudiesExplanatory

• Adjudicates between competing explanations

• Example: Does the usage of static analysis tools reduce the number of
field defects?

• Rival theories: existing architectures are useful for anchoring, vs.
existing architectures are over-constraining during RE

Descriptive

• Describes sequence of events and underlying mechanisms

• Example: How does pair programming actually work?

• Example: How is static analysis used in practice?

Overview of Research Strategy Characteristics

Experiment Survey Case Study Action
Research

Primary
Objective Explanatory Descriptive Exploratory Improving

Primary
Data Quantitative Quantitative Qualitative Qualitative

Design Type Fixed Fixed Flexible Flexible

Experiment

Case Study

Survey

After showing
cause-effect
relationships,
investigate
influencing factors
in practice or
whether it can
improve practice.

After establishing
a phenomenon,

study it in more
detail for a better
understanding,

e.g.
explanations.

in-vitro

in-vivo

Example

Let’s assume we have found our new static analysis tool in our
experiments to be quite effective and efficient in our experiments.

Now we want to understand static analysis and especially our new tool in
a realistic setting.

Therefore, we need to perform a case study that helps us to understand
what are current problems with static analysis and how well developers
could work with our tool.

Case study
design

Case Study ProcessStudy idea

Preparation
for data
collection Collecting

evidence Analysis of
collected
data

Reporting

Case study report

Study design

Questionnaires,
interview guidelines, …

Study data

Conclusions

Rationale and Objective of the Study

Rationale: A research gap or practical problem

Objective: What do we want to achieve with the study?

Observation

Theory

Induction Hypothesis

Deduction

Comparison

Case Study

Fr
om

: R
un

es
on

 e
t a

l.
(2

01
2)

 w
hi

ch
 is

 b
as

ed
 o

n
Yi

n
(2

00
3)Single-case study Multiple-case study

H
ol

is
tic

 c
as

e
st

ud
y

Em
be

dd
ed

 c
as

e
st

ud
y

Context

Case = Unit of Analysis

Context 1

Case 1 = Unit
of Analysis 1

Context 2

Case 2 = Unit
of Analysis 2

Context

Case

Unit of
Analysis 1

Unit of
Analysis 2

Context 1
Case 1

Context 2
Case 2

Unit of
Analysis 1.1

Unit of
Analysis 1.2

Unit of
Analysis 2.1

Unit of
Analysis 2.2

Theoretical Framework

What is the theoretical frame of reference?

Literature study

Cognitive theories

Social theories

Organisational theories

…

Research Questions and Hypotheses

Every case study should have research questions.

But not every case study can have hypotheses.

Case Selection
Extreme/deviant: To obtain information on unusual cases, which can be
especially problematic or especially good in a more closely defined
sense.

Maximum variation: To obtain information about the significance of
various circumstances for case process and outcome (e.g., three to four
cases that are very different on one dimension: size, form of organisation,
location, budget).

Critical: To achieve information that permits logical deductions of the
type, “If this is (not) valid for this case, then it applies to all (no) cases.”

Paradigmatic: To develop a metaphor or establish a school for the
domain that the case concerns.

From: Flyvbjerg (2007) as cited in Runeson et al. (2012)

Triangulation

Data Triangulation Observer Triangulation

Methodological Triangulation Theory Triangulation

Quantitative Data
CollectionQualitative Data Collection 

with Observations

Qualitative Data
Collection with
Interviews

Direct Observations 
of Developers

Interviews Repository Mining Expert for Phenomenon

Method Expert

Neutral Person

StressCognitive Load

Organisational

Threats to Validity
Threat to Case study tactic Phase of research in

which tactic occurs

Construct
Validity

• Use multiple sources of evidence

• Establish chain of evidence

• Have key informants review draft report

Data collection

Data collection

Composition

Internal
Validity

• Do pattern-matching

• Do explanation-building

• Address rival explanations

• Use logic models

Data analysis

Data analysis

Data analysis

Data analysis

External
Validity

• Use theory in single-case studies

• Use replication logic in multiple-case

studies

Research design

Research design

Reliability • Use case study protocol

• Develop case study database

Data collection

Data collection

Design Checklist
1. What is the case and its units of analysis?

2. Are clear objectives, preliminary research questions, hypotheses (if

any) defined in advance?

3. Is the theoretical basis – relation to existing literature or other cases –

defined?

4. Are the authors’ intentions with the research made clear?

5. Is the case adequately defined (size, domain, process, subjects…)?

6. Is a cause-effect relation under study? If yes, is it possible to

distinguish the cause from other factors using the proposed design?

7. Does the design involve data from multiple sources (data triangulation),

using multiple methods (method triangulation)?

8. Is there a rationale behind the selection of subjects, roles, artefacts,

viewpoints, etc.?

9. Is the specified case relevant to validly address the research questions

(construct validity)?

10. Is the integrity of individuals/organisations taken into account?

Let’s assume that our experiment on the
effects of specific refactorings did not
show any statistically significant
results. Yet, there are many
practitioners advocating it. Hence, we
want to understand its usage and
effects in practice!

Make a rough case study design!

Refactoring

Data Collection Methods

• qualitative,
quantitative,
combination

• triangulation “to bring
the data together”

Based on slide deck „Empirical Software Engineering Lecture“ by Andreas Jedlitschka published under CC BY-SA-NC

Fact

Focus Group

Documents

Archival Records

InterviewsObservations

Convergance of

Evidence

Principles of Data Collection
• Use multiple data sources: Triangulation, i.e. searching convergent

findings from different sources (→ Increase construct validity)

• Create a case study database

• Content

• Case study notes (clear & available for later use)

• Case study documents

• Tabular materials (collected & created)

• Narratives (initial open-ended answers to the study questions
suggested by investigators)

• Separate from the final report to be written

Principles of Data Collection
• Maintain a chain of information: Explicit documentation of the

traceability between research questions and case study procedures.

• Ensure the collection of all data required for answering the research
questions.

• Justify the collection of each data item.

• Design and use the case study protocol for supporting data collection
and analysis.

• Storage of actual data in the data base for later reviews including
elicitation circumstances.

• Explicit citation of data sources and data base location in the final
report and conclusions

Classification of Data Sources
Interviews Focus

groups

Observations with
„think aloud“

Screen capturing

Analysis of work
artefacts

Repository
mining

First degree

Second degree

Third degree

Interviews

From: Runeson et al. (2012)

Unstructured Semistructured Fully Structured

Typical Foci
How individuals

qualitatively
experience the
phenomenon

How individuals
qualitatively and
quantitatievely

experience

Researcher seeks to
find relations between

constructs

Interview Questions Interview guide with
areas to focus on

Mix of open and
closed questions Closed questions

Objective Exploratory Descriptive and
explanatory

Descriptive and
explanatory

Postinterview Activities

• Consolidate notes and/or transcribe recording

• Give notes/transcription to interviewee for feedback

Observations

Observations
with „think

aloud“

Screen capturing

Video recordings

Archival Data

Requirements specifications
Meeting minutes

Source codeTest specifications

Project plan
Organisational

charts

Financial records Reports

Metrics

Defect countsSales figures

Integration times
and failures

Time sheets

Project costs

Data Collection Checklist

1. Is a case study protocol for data collection and analysis derived (what, why, how, when)? Are procedures for its update defined?

2. Are multiple data sources and collection methods planned (triangulation)?

3. Are measurement instruments and procedures well defined (measurement definitions, interview questions)?

4. Are the planned methods and measurements sufficient to fulfil the objective of the study?

5. Is the study design approved by a review board, and has informed consent obtained from individuals and organisations?

6. Is data collected according to the case study protocol?

7. Is the observed phenomenon correctly implemented (e.g. to what extent is a design method under study actually used)?

8. Is data recorded to enable further analysis?

9. Are sensitive results identified (for individuals, the organisation or the project)?

10.Are the data collection procedures well traceable?

11.Does the collected data provide ability to address the research question?

Checklist from Runeson, P. and Höst, M. (2009). Guidelines for conducting and reporting case study research in software engineering. Emp. Softw. Engg. 14, 2 (April 2009), 131-164.

How could we apply these different data collection
techniques in our refactoring case study?

Develop an interview guide that you would use for
interviewing developers in a company!

Refactoring

Hypothesis
generating

Hypothesis
confirmation

Data analysis

Deductive
research

Inductive
research

Descriptive
statistics

Inductive
statistics

Quantitative data
analysis

Predictive
models

Grounded
Theory

Qualitative
content
analysis

Qualitative data analysis

Discourse
analysis

Ethnography

Hermeneutics

…

Qualitative Content Analysis

•Proposed by Mayring

• Its aim is to analyze protocols of communication

• It can be applied in various disciplines, such as psychology, sociology, and
linguistics.

•Depending on the discipline, the unit of analysis may be quite different. In SE,
we usually start at the phrase or sentence level.

Qualitative Content Analysis

Fr
om

: M
ay

rin
g

(2
01

4)

Definition of the material

Analysis of the situation of origin

Formal characteristics of the material

Direction of the analysis

Theoretical differentiation of subcomponents of the problem

Determination of techniques of analysis and establishment of a concrete procedural
model

Definition of content analytical units

Analytical steps taken by means of the category systems: summary/inductive category
formation, explication/context analysis, structuring/deductive, mixed

Re-checking the category system by applying it to theory and material

Interpretation of the results in relation to the main problem and issue

Application of content-analytical quality criteria

From: Mayring (2014)

What exactly is part of the text
to analyse?

Who was the
author? Which
background?

How did we get to the text
(e.g. transcription)?

On what level should
the output of the
analysis be?Can we theoretically

structure the problem?

In which concrete steps do
we plan to perform the
analysis?Do we look at single words,

phrases, sentences,
pages?

Does the category system
fit to the theory and the
material?

Are there differences
between different coders?

Basic Forms of Interpretation
• Summary: The objective of the analysis is to reduce the material in such a way

that the essential contents remain, to create through abstraction a
comprehensive overview of the base material which is nevertheless still an image
of it.

• Explication: The objective of the analysis is to provide additional material on
individual doubtful text components (terms, sentences…) with a view to
increasing understanding, explaining, interpreting the particular passage of text.

• Structuring: The objective of the analysis is to filter out particular aspects of the
material, to give a cross-section through the material according to pre-
determined ordering criteria, or to assess the material according to certain
criteria.

From: Mayring (2014)

Summarizing

Fr
om

: M
ay

rin
g

(2
01

4)

Step 1
Determination of the units of analysis

Step 2
Paraphrasing of the content-bearing text passages

Step 3
Determining the envisaged level of abstraction, generalization of paraphrases below this

level of abstraction

Step 4
First reduction through selection, erasure of semantically identical paraphrases

Step 5
Second reduction through binding, construction, integration of paraphrases on the

envisaged level of abstraction

Step 6
Collation of the new statements as a category system

Step 7
Re-testing of the new statements as a category system

Summarizing

Case Page Paraphrase Generalisation Reduction

A 43 P1: Dev. was shocked by the many warnings
presented to her after running the tool.

Overwhelmed by
number of warnings

C1: Developer is
overwhelmed by the
number, diversity and
summaries from the

static analysis report.

A 44 P2: Dev. did not know where to start
understanding the warnings from FindBugs.

Overwhelmed by
diversity of warnings

A 44 P3: Dev. could not make sense of lengthy
summaries

Overwhelmed by the
summaries of warnings

Context Analysis

From: Mayring (2014)

Step 1
Determination of evaluation unit, i.e., establishing the portion of text to be interpreted

Step 2
Lexical-grammatical definition of the portion of text involved

Step 3
Determining the additional explication material permissible

Step 4
Collation of the material

Narrow context analyis: direct text environment
Broad context analysis: additional material beyond the limits of the text

Step 5
Phrasing of interpretative paraphrase(s)

Step 6
Testing the sufficiency of the explication

Deductive Category Assignment

Fr
om

: M
ay

rin
g

(2
01

4)

Step 1
Research question, theoretical background

Step 2
Definition of the category system (main categories and subcategories) from theory

Step 3
Definition of the coding guideline (definitions, anchor examples and coding rules)

Step 4
Material run-through, preliminary codings, adding anchor examples and coding rules

Step 5
Revision of the categories and coding guideline after 10–50 % of the material

Step 6
Final working through the material

Step 7
Analysis, category frequencies and contingencies interpretation

Deductive Category Assignment

Variable Value Definition Anchor sample Coding rules

Static analysis
usage

U1: high level of
usage

Frequent daily use of several
static analysis tools

„I check every change with
FindBugs before I commit.“

Both aspects must be
met.

U2: medium level of
usage

Use of some tool at least every
week

„I apply Coverity before I
present my work to the PO.“

U3: low level of
usage

Use of some tool from time to
time

„We don’t check our code
regularly but before we

release.“

U4: usage not
inferable

No clear statement from the
developer

„We do have some static
analysis tools.“

Inter-Coder Agreement

• Give text to be analysed to second person and compare outcome.

• A second coder gets all the category definitions and rules for a recoding.

• Light-weight: Review of the coding of the first coder

We can also calculate the inter-coder agreement, e.g. with Cohen’s kappa.

Based on: Mayring (2014)

Analysis Checklist

1. Is the analysis methodology defined, including roles and review procedures?

2. Is a chain of evidence shown with traceable inferences from data to research questions
and existing theory?

3. Are alternative perspectives and explanations used in the analysis?

4. Is a cause-effect relation under study? If yes, is it possible to distinguish the cause from
other factors in the analysis?

5. Are there clear conclusions from the analysis, including recommendations for practice/
further research?

6. Are threats to the validity analyzed in a systematic way and countermeasures taken?
(Construct, internal, external, reliability) question?

We have a transcript of one interview with one developer
regarding her use of refactorings in her last project. Try
to do a summarizing qualitative analysis on it.

Refactoring

Reporting the Context
Facet Element

Product

Maturity 
Quality 

Size

System type

Customization

Programming language

Processes
Activities

Workflow

Artifacts

Practices, tools, technique CASE tools

Practices and techniques

People Roles

Experience

Organization

Model of overall organization

Organizational unit

Certification

Distribution

Market

Number of customers

Market segments

Strategy

Constraints

Reporting Checklist

1. Are the case and its units of analysis adequately presented?
2. Are the objective, the research questions and corresponding answers

reported?
3. Is the report suitable for its audience, easy to read and well structured?

Desired Skills of the Investigators

• Mastering the art of asking insightful questions and skillfully interpreting the
answers, empowering you with a deeper understanding of the subject matter.

• Being a good listener without being trapped by preconceptions or ideologies.
• Being adaptive and flexible, perceiving newly encountered situations as

opportunities rather than threats, and being open to change.
• Having a good grasp of the issue being studied and not missing essential clues.
• Understanding when a deviation is acceptable.
• Not mechanically recording data, but interpreting information in real-time and

being able to react to contradictions among sources of evidence.
• Avoiding bias and not using a case study to substantiate a preconceived position.
• Being open to contrary findings.

Criticism
Please remember the following points:

•Criticism: Lack of systematic handling of data (Lack of rigor!)
•Response: It is crucial to address this concern by systematically reporting all data and
procedures involved in the research.

•Criticism: Little basis for scientific generalization!
•Response: The purpose of the research is to generalize to theoretical propositions,
and not to a population as in statistical research. This involves analytic generalization
rather than statistical generalization.

•Criticism: Takes too long, resulting in massive, unreadable documents.
•Response: The time taken for the research process depends on the specific research
question at hand. The analysis and documentation will be carried out based on the
choices made by the investigators.

References

• B. Flyvbjerg. Five misunderstandings about case-study research. In
Qualitative Research Practice. SAGE, 2007.

• P. Mayring. Qualitative Content Analysis. Theoretical Foundation,
Basic Procedures and Software Solution. Beltz, 2014.

• K. Petersen and C. Wohlin. Context in industrial software
engineering research. In Proceeding of the 3rd International
Symposium on Empirical Software Engineering and Measurement.
IEEE, 2009.

• P. Runeson, M. Höst, A. Rainer, B. Regnell. Case Study Research in
Software Engineering. Guidelines and Examples. Wiley, 2012.

• R. E. Stake. The Art of Case Study Research. SAGE, 1995.
• R. K. Yin. Case Study Research. Design and Methods. 3rd edition.

SAGE, 2003.

