
Empirical Software Engineering
What is it and why do we need it?

Blekinge Institute of Technology, Sweden
fortiss GmbH, Germany
www.mendezfe.org
mendezfe

Daniel Méndez

Ground rules

As we have to use ,
please feel free to interrupt me any time as I

might not see you raising your hand.

Whenever you have questions / remarks,
please don’t ask , but

share them with the whole group.

(1)

(2)

What could be wrong with such a study?

Research Question: Which car has the best driving performance?
H_0: There is no difference.
20 people without a driving licence participate.
They are taught to drive in a lecture of 2 hours.
Results: The BMW is significantly better than the Audi (p<0.01)

Adopted from: Dag I.K. Sjøberg, Keynote at the International Conference on Product-Focused SW Process Improvement 2016, Trondheim, Norway.
Image sources: Manufacturer websites

Empirical research is
more than simply applying statistical equations

Goal of the lecture
What is this little thing called “Empirical Software Engineering”?

What we will discuss
• In a nutshell:

• Broader perspective on Software Engineering (SE) as a scientific discipline
• A few principles, concepts, and terms in Empirical SE

• Why we need empiricism in Software Engineering research
• What the perspectives are for the research community and for you

Focus:
What & Why

Basis for…
• Course on research methods
• Master Thesis projects
• The time afterwards

Focus:
How

Outline

• What is Empirical Software Engineering?

• Why do we need Empirical Software Engineering?

• What are the perspectives in Empirical Software Engineering?

Outline

• What is Empirical Software Engineering?

• Why do we need Empirical Software Engineering?

• What are the perspectives in Empirical Software Engineering?

Let’s start step by step….

What is science?
-- What do you think? --

“Science” wasn’t built in a day…

384-322 BC 1561-1626 1694-1778 1724-1804 1896-1980 1902-1994… … … …

Aristoteles Bacon Voltaire Kant Piaget Popper

• Search for laws and
reasoning for phenomena

• Understanding the nature
of phenomena

• Progress of
knowledge of
nature (reality)

• Draw benefits from
knowledge growth

• Emancipation from
gods and beliefs

• System of
Epistemology (theory
of knowledge)

• Era of constructivism
• Falsification as

demarcation
criterion

• Birth of null
hypothesis testing

Science is understood as the human undertaking for the search of
knowledge (through systematic application of scientific methods)

àNeeds to be considered in a historical context
à Increased understanding of scientific practice (and what science eventually is)

Scientific practices and research methods have
changed over time, the role of empiricism* not

Today

* Gaining knowledge through sensory experiences

384-322 BC

Le Petit Prince (1943) Large Hadron Collider

Scientific knowledge and practice

Necessary postulates for scientific practice (selected):
• There are certain rules, principles, and norms for scientific practices

• Rationalism: Reasoning by argument / logical inference / mathematical proof
• Empiricism: Reasoning by sensory experiences (case studies, experiments,…)

• There is nothing absolute about truth
• There is a scientific community to judge about the quality of empirical

studies

Scientific knowledge is the portrait of
our understanding of reality (via scientific theories).

What is Software Engineering research?
Is it scientific?
-- What do you think? --

Different purposes in science

• Gaining and validating new
insights

• Often theoretical character
• Typically addressed by natural

and social sciences

Basic Science

• Applying scientific methods to
practical ends
• Often practical (& pragmatic)

character
• Typically addressed by

engineering disciplines

In software engineering research, we
• apply scientific methods to practical ends (treating design science problems)
• treat insight-oriented questions, thus, we are an insight-oriented science, too

Applied Science

Different purposes in science

Fundamental / basic research Applied research

Image Sources: Wikipedia (l), Apple (r)

Basic Science Applied Science

* Graph theory
(Königsberg Bridge problem)

What is Software Engineering research?
Is it scientific?

-- Yes, Software Engineering research is scientific! --

Empirical Software Engineering

Relevance from a theoretical and practical perspective:
• Reason about the discipline and (e.g. social) phenomena

involved
• Recognise and understand limitations and effects of

artefacts (e.g. by evaluating technologies, techniques,
processes, models, etc.) in their practical contexts

The ultimate goal of Empirical Software Engineering is to advance
our body of knowledge by building and evaluating theories.

But what is a Scientific Theory?
-- What do you think? --

Theories (generally speaking)

Examples (following this general notion of theory):
• “Earth is flat”
• “Vaccinations lead to autism”
• “Wearing face masks does more harm than the effects of COVID-19”
• …

A theory is a belief that there is a pattern in phenomena.

Are these theories scientific?
No: Speculations based on narrow views, imagination, and hopes and fears –
often resulting in opinions that cannot be refuted (i.e. logical fallacies)

Scientific Theories

1. Tests
• Experiments, simulations, …
• Replications

2. Criticism
• Peer reviews / acceptance in the community
• Corroborations / extensions with further theories

A scientific theory is a belief that there is a pattern in phenomena while
having survived
1. tests against sensory experiences
2. criticism by critical peers

Note: Addresses so-called
Demarcation Problem to
distinguish science from non-
science (as per introduction by K.
Popper)

In scope of empirical research methods
(but out of scope for today)

Scientific Theories have…
… a purpose:

… quality criteria:
• Testability
• Level of confidence („relation to existing evidence“)
• Usefulness to researchers and practitioners („impact and implications“)
• …

Analytical Explanatory Predictive Explanatory &
Predictive

Scope Descriptions and
conceptualisation,
including
taxonomies,
classifications, and
ontologies
- What is?

Identification of
phenomena by
identifying causes,
mechanisms or
reasons
- Why is?

Prediction of what
will happen in the
future
- What will happen?

Prediction of what
will happen in the
future and
explanation
- What will happen
and why?

Note: Law “versus” Theory
A law is a descriptive theory
without explanations (i.e. an
analytical theory)

Adapted from: Sjøberg, D., Dybå, T., Anda, B., Hannay, J. Building Theories in Software Engineering, 2010.
Further information on: https://goo.gl/SQQwxt

https://goo.gl/SQQwxt

Exemplary framework for describing theories
in Software Engineering
• Constructs: What are the basic elements?

(Actors, technologies, activities, system entities, context factors)
• Propositions: How do the constructs interact?
• Explanations: Why are the propositions as specified?
• Scope: What is the universe of discourse in which the theory is

applicable?

Source (example): Wagner, Mendez et al. Status Quo in Requirements Engineering: A Theory and a Global Family of Surveys, TOSEM 2018.
Source (framework): Sjøberg, D., Dybå, T., Anda, B., Hannay, J. Building Theories in Software Engineering, 2010.

Exemplary framework for describing theories
in Software Engineering
• Constructs: What are the basic elements?

(Actors, technologies, activities, system entities, context factors)
• Propositions: How do the constructs interact?
• Explanations: Why are the propositions as specified?
• Scope: What is the universe of discourse in which the theory is

applicable?

Source (example): Wagner, Mendez et al. Status Quo in Requirements Engineering: A Theory and a Global Family of Surveys, TOSEM 2018.
Source (framework): Sjøberg, D., Dybå, T., Anda, B., Hannay, J. Building Theories in Software Engineering, 2010.

Example

Proposition:
“Structured requirements lists are documented
textually in free form or textually with constraints.”

Explanation and Scope:
“Free-form and constraint textual requirements are
sufficient for many contexts such as in agile projects
where they only act as reminders for further
conversations.”

Theories and hypotheses
Scientific theory
• “[…] based on hypotheses tested and verified

multiple times by detached researchers” (J. Bortz
and N. Döring, 2003)

Hypothesis
• “[…] a statement that proposes a possible

explanation to some phenomenon or event” (L.
Given, 2008)

• Grounded in theory, testable and falsifiable
• Often quantified and written as a conditional

statementEmpirical Approaches

Theory / Theories

(Tentative) Hypothesis

Falsification /
Corroboration

Theory (Pattern)
Building

Hypothesis
Building

If cause/assumption (independent variables)
then (=>) consequence (dependent variables)

Note: We don’t “test theories”, but
their consequences via hypotheses
(i.e. testable propositions)

From real world phenomena to theories and back:
The empirical life cycle

Empirical Approaches

Theory / Theories

(Tentative) Hypothesis

Falsification /
Corroboration

Theory (Pattern)
Building

Units of Analysis
Sampling Frame

Sampling

Hypothesis
Building

Empirical Inquiries

Induction
Inference of a

general rule
from a particular

case/result
(observation)

Abduction
(Creative) Synthesis of an

explanatory case from a general rule
and a particular result (observation)

Deduction
Application of a general rule

to a particular case,
inferring a specific result

Source: Mendez and Passoth. Empirical Software
Engineering: from Discipline to Interdiscipline, 2018.

From real world phenomena to theories and back:
The empirical life cycle

Empirical Approaches

Theory / Theories

(Tentative) Hypothesis

Falsification /
Corroboration

Theory (Pattern)
Building

Units of Analysis
Sampling Frame

Sampling

Hypothesis
Building

Empirical Inquiries

Induction
Inference of a

general rule
from a particular

case/result
(observation)

Abduction
(Creative) Synthesis of an

explanatory case from a general rule
and a particular result (observation)

Deduction
Application of a general rule

to a particular case,
inferring a specific result

Source: Mendez and Passoth. Empirical Software
Engineering: from Discipline to Interdiscipline, 2018.

Further reading and outlook

• Epistemological setting of Empirical Software Engineering
• Theory building and evaluation
• Challenges in Empirical Software Engineering

Preprint: https://arxiv.org/abs/1805.08302

Outline

• What is Empirical Software Engineering?

• Why do we need Empirical Software Engineering?

• What are the perspectives in Empirical Software Engineering?

Empirical Software Engineering

Relevance from a theoretical and practical perspective:
• Reason about the discipline and (e.g. social) phenomena

involved
• Recognise and understand limitations and effects of

artefacts (e.g. by evaluating technologies, techniques,
processes, models, etc.) in their practical contexts

The ultimate goal of Empirical Software Engineering is to advance
our body of knowledge by building and evaluating theories.

RECAP

What are exemplary scientific
Software Engineering Theories?

-- Which ones do you know? --

Scientific Theories in Software Engineering

Image Source: https://www.worldwildlife.org/habitats/deserts

Disclaimer: Symbolic statement, might be slightly over exaggerated

Transferred verbatim from other
disciplines (i.e. not adopted)

Example: Theory of Gatekeeping

Isolated and vague (i.e. universal)

Example: “Frontloading efforts
decreases overall development costs”

Not backed by evidence (i.e. non-
scientific conventional wisdom)

Example: “GoTo statements are harmful”

Current state of evidence in Software Engineering

“[…] judging a theory by assessing the number,
faith, and vocal energy of its supporters […] basic
political credo of contemporary religious maniacs”

— Imre Lakatos, 1970

* Addressing the situation in the quantum mechanics research community, an analogy

Example: Goal-oriented RE

[1] Horkoff et al. Goal-Oriented Requirements Engineering: A Systematic Literature Map, 2016

Papers published [1]: 966

Papers including a case study [1]: 131

Studies involving practitioners [2]: 20

Practitioners actually using GORE [3]: ~ 5%

[3] Mendez et al. Naming the Pain in Requirements Engineering Initiative – www.napire.org
[2] Mavin, et al. Does Goal-Oriented Requirements Engineering Achieve its Goal?, 2017

Example: Goal-oriented RE

[1] Horkoff et al. Goal-Oriented Requirements Engineering: A Systematic Literature Map, 2016

Papers published [1]: 966

Papers including a case study [1]: 131

Studies involving practitioners [2]: 20

Practitioners actually using GORE [3]: ~ 5%

[3] Mendez et al. Naming the Pain in Requirements Engineering Initiative – www.napire.org
[2] Mavin, et al. Does Goal-Oriented Requirements Engineering Achieve its Goal?, 2017

Current state of evidence in Software Engineering
Available studies often…
• … remain isolated
• … discuss little (to no) relation

to existing evidence
• … strengthen confidence on own hopes

(and don’t report anything around)
• … don’t report negative results

Source (levels of evidence): Wohlin. An Evidence Profile for Software Engineering Research and Practice, 2013.

In most cases, we
are here

Conventional Wisdom in SE

“Leprechauns”: Folklore turned into facts
• Emerge from times where claims by

authorities were treated as “facts”
• Reasons manifold:

• Lack of empirical awareness
• Neglecting particularities

of practical contexts
• Neglecting relation to existing evidence
• No proper citations

(one side of the medal, over-conclusions, etc.)
• Lack of data
• …

Exemplary symptoms: #NoEstimates
• What are benefits and

drawbacks of #noestimates?
• What are project

circumstances/
characteristics under which
such philosophy applies?

Source (first post on this topic): http://zuill.us/WoodyZuill/2012/12/10/no-estimate-programming-series-intro-post/

„The key insight is this: spiraling delays are normal in
projects. They are entirely predictable (as in we
know they will happen), but also entirely
unpredictable (as in we don’t know which delays
will spiral out of control). So we must prepare for
them. […] core principle of #NoEstimates: Always be
ready to stop the project and deliver value, at any time.”

So far: no evidence, no trade-
offs, no balanced discussion,
but only rather “religious”
discussions.

Exemplary “leprechaun”:
Go To statements considered harmful

[1] Edsger Dijkstra . Go To Statement Considered Harmful. Communications of the ACM, 1968.

• Public exchange based on reasoning by argument (rationalist arguments)...

[4] Nagappan et al. An empirical study of goto in C code from GitHub repositories, 2015.

[2] Frank Rubin. ”GOTO Considered Harmful" Considered Harmful. Communications of the ACM, 1969.
[3] Donald Moore et al. " 'GOTO Considered Harmful' Considered Harmful" Considered Harmful?" Communications of the ACM, 1987.

1968

• … finally tackled by one empirical study nearly 50 years later.

Exemplary “leprechaun”:
Go To statements considered harmful

[1] Edsger Dijkstra . Go To Statement Considered Harmful. Communications of the ACM, 1968.

• Public exchange based on reasoning by argument (rationalist arguments)...

[4] Nagappan et al. An empirical study of goto in C code from GitHub repositories, 2015.

[2] Frank Rubin. ”GOTO Considered Harmful" Considered Harmful. Communications of the ACM, 1969.
[3] Donald Moore et al. " 'GOTO Considered Harmful' Considered Harmful" Considered Harmful?" Communications of the ACM, 1987.

1968 1969

• … finally tackled by one empirical study nearly 50 years later.

Exemplary “leprechaun”:
Go To statements considered harmful

[1] Edsger Dijkstra . Go To Statement Considered Harmful. Communications of the ACM, 1968.

• Public exchange based on reasoning by argument (rationalist arguments)...

[4] Nagappan et al. An empirical study of goto in C code from GitHub repositories, 2015.

[2] Frank Rubin. ”GOTO Considered Harmful" Considered Harmful. Communications of the ACM, 1969.
[3] Donald Moore et al. " 'GOTO Considered Harmful' Considered Harmful" Considered Harmful?" Communications of the ACM, 1987.

1968 1969 1987

• … finally tackled by one empirical study nearly 50 years later.

Exemplary “leprechaun”:
Go To statements considered harmful

[1] Edsger Dijkstra . Go To Statement Considered Harmful. Communications of the ACM, 1968.

• Public exchange based on reasoning by argument (rationalist arguments)...

[4] Nagappan et al. An empirical study of goto in C code from GitHub repositories, 2015.

[2] Frank Rubin. ”GOTO Considered Harmful" Considered Harmful. Communications of the ACM, 1969.
[3] Donald Moore et al. " 'GOTO Considered Harmful' Considered Harmful" Considered Harmful?" Communications of the ACM, 1987.

1968 2015

• … finally tackled by one empirical study nearly 50 years later.

“We conclude that developers
limit themselves to using goto
appropriately, [not] like Dijkstra
feared, [thus] goto does not
appear to be harmful in practice.”

Key Takeaway

• The current state of evidence in
Software Engineering is still weak
• Practical relevance and impact?
• Potential for transfer into practice and

adoption?

• But there is hope…
• Importance of empirical research

recognised
• Growth of a strong research

community over last two decades

Outline

• What is Empirical Software Engineering?

• Why do we need Empirical Software Engineering?

• What are the perspectives in Empirical Software Engineering?

Empirical Software Engineering Community

Empirical Software Engineering research community 2018 (Oulu, Finland)

Goals and perspectives in
Empirical Software Engineering
1. Provide tools and methods for empirical research
2. Establish strong Software Engineering theories
3. Eradicate conventional wisdom (“leprechauns”)

Various settings
• Industry settings
• Research initiatives from the community
• Publicly funded research projects

Example 1:
Industry setting
(as part of a Academia-industry collaboration)

Challenge: Role and Relevance of RE to Business Success unclear
Goal: “Find the proper Problem before solving it properly”
Exemplary question: “How does Customer Satisfaction depend on RE?”

How relevant is RE to business success?

1. How is RE conducted
at project level?

2. How does customer
satisfaction depend on
factors in RE?

3. What factors do
influence the way RE is
conducted?

Document
Analysis

Online
Survey

Interviews

How does Customer Satisfaction depend on RE?

• Interviews of different roles in different project settings
• Root cause analysis of customer satisfaction to phenomena in RE

… effective product and portfolio management, feature sizing, and project organisation
(feature planning, prioritisation, and sizing, resource and expertise planning, technology prioritisations)

… clear (dev.) process interfaces, responsibilities, and liability in distributed environments

… (regulatory) compliance: safety, security, and usability

… effective risk management and identification of moving target (and wicked problems)
(basis for “good-enough RE” and potential infusion of new RE techniques such as Design Thinking)

… increased stakeholder involvement and participation (accountability but also motivation)

… (…)

RE is a recognised basis for…

RE is a recognised basis for…

Example 2:
Research initiatives
Background: Requirements Engineering research often dominated by

conventional wisdom
Challenge: What research topics are of high practical relevance?

Exemplary initiatives in context of IREB working group (“IREB Research”)

NaPiRE

What are practices and problems in practical
Requirements Engineering environments?

How do practitioners perceive the relevance of
contributions by the RE research community?

How do practitioners perceive the relevance of
RE standards?

Naming the Pain in Requirements Engineering

Objectives: Build theory on RE practices used in industry and
on problems practitioners experience

Research method: Large-scale survey research

NaPiRE

www.napire.org

Practices Problems, causes, and effects

Context

Causes

Problems

Effects

First theory on Requirements Engineering practices and
problems supporting problem-driven research

See yourself and play with the interactive data visualisation:
www.napire.org

Interactive data visualisation

See yourself and play with the interactive data visualisation:
www.napire.org

Filter data by various criteria

See yourself and play with the interactive data visualisation:
www.napire.org

Quiz
What is the most frequently stated
problem companies face in RE when
using a rather agile software
development process model?

?

Unprecise / Unmeasurable requirements

Incomplete or hidden requirements

Communication problems

?

?

See yourself and play with the interactive data visualisation:
www.napire.org

* Prize
Ericsson Space sweater J

Quiz
What is the most frequently stated
problem companies face in RE when
using a rather agile software
development process model?

Unprecise / Unmeasurable requirements

Incomplete or hidden requirements

Communication problems

See yourself and play with the interactive data visualisation:
www.napire.org

* Prize
Ericsson Space sweater J

Example 3:
Publicly funded research projects

https://rethought.se

Background: Empirical software engineering is advancing already, but it
needs to integrate multiple competences:

• Data-centric automation
• Value orientation
• Human-centricity

Goal: Extend empirical SE to solve next generation SE problems.

See yourself: www.rethought.se

Outline

• What is Empirical Software Engineering?

• Why do we need Empirical Software Engineering?

• What are the perspectives in Empirical Software Engineering?

Key Takeaways
Empirical research is important to turn
software engineering into a scientific discipline

The state of evidence in Software
Engineering is still weak

The growth of a community of empirical
researchers and practitioners is promising

We are now entering the next generation of
empirical Software Engineering research

